On Orientational Relief of Inter-molecular Potential and the Structure of Domain Walls in Fullerite C 60
نویسندگان
چکیده
A simple planar model for an orientational ordering of threefold molecules on a triangular lattice modelling a close-packed (111) plane of fullerite is considered. The system has 3sublattice ordered ground state which includes 3 different molecular orientations. There exist 6 kinds of orientational domains, which are related with a permutation or a mirror symmetry. Interdomain walls are found to be rather narrow. The model molecules have two-well orientational potential profiles, which are slightly effected by a presence of a straight domain wall. The reason is a stronger correlation between neighbour molecules in triangular lattice versus previously considered square lattice A considerable reduction (up to one order) of orientational interwell potential barrier is found in the core regions of essentially two-dimentional potential defects, such as a threedomain boundary or a kink in the domain wall. For ultimately uncorrelated nearest neighbours the height of the interwell barrier can be reduced even by a factor of 10. PACS: 61.48.+c, 78.30.Na
منابع مشابه
Effects of T208E activating mutation on MARK2 protein structure and dynamics: Modeling and simulation
Microtubule Affinity-Regulating Kinase 2 (MARK2) protein has a substantial role in regulation of vital cellular processes like induction of polarity, regulation of cell junctions, cytoskeleton structure and cell differentiation. The abnormal function of this protein has been associated with a number of pathological conditions like Alzheimer disease, autism, several carcinomas and development of...
متن کاملComparison of using Different Modeling Techniques on the Prediction of the Nonlinear Behavior of R/C Shear Walls
Abstract: Reinforced concrete shear walls have been used throughout the world as known resisting elements for the lateral wind and earthquake loads. They are mostly designed and constructed based on elastic calculations and therefore resulting in un-economical sections. In order to overcome this weakness, scientists have proposed different methodologies to account for the non linear behavior of...
متن کاملComparative Investigation of R213G Mutation in DNA-Binding Domain of P53 Protein via Molecular Dynamics Simulation
Introduction: P53 is a tumor suppressor protein with numerous missense mutations identified in its gene. These mutations are observed in a vast number of cancers. R213G is one of them which has a role in metastatic lung cancers. In this research, R213G was studied in comparison with the wild type via molecular dynamics simulation. Method: For the three-dimensional structure of the wild-type P53...
متن کاملComparative Investigation of R213G Mutation in DNA-Binding Domain of P53 Protein via Molecular Dynamics Simulation
Introduction: P53 is a tumor suppressor protein with numerous missense mutations identified in its gene. These mutations are observed in a vast number of cancers. R213G is one of them which has a role in metastatic lung cancers. In this research, R213G was studied in comparison with the wild type via molecular dynamics simulation. Method: For the three-dimensional structure of the wild-type P53...
متن کاملMolecular Docking Based on Virtual Screening, Molecular Dynamics and Atoms in Molecules Studies to Identify the Potential Human Epidermal Receptor 2 Intracellular Domain Inhibitors
Human epidermal growth factor receptor 2 (HER2) is a member of the epidermal growth factor receptor family having tyrosine kinase activity. Overexpression of HER2 usually causes malignant transformation of cells and is responsible for the breast cancer. In this work, the virtual screening, molecular docking, quantum mechanics and molecular dynamics methods were employed to study protein–ligand ...
متن کامل